Midterm Practice 2 – probability – Schneider

- 1. Write down the number of possibilities in the following problems (you can leave in symbolic form with numbers in correct places)
 - a. The number of different letter arrangements from **aardvark**
 - b. You have 110 people in a baking contest. How many ways can there be five winners where there is a first, second, third ,fourth and fifth place winner?
 - c. Consider $(x+y)^{30}$. What is the coefficient of x^5y^{25} .
 - d. You have 15 elements in a sample space. How many different six element sets (events) are there.
 - e. There are 9 events in a sample space (A thru I). How many different sets of events include the events A and B.
 - f. How many outcomes of 30 flips of a coin have 5 or 6 heads?
- 2. Note that (like the book) when I write capital letters next to each other I am indicating intersection. A,B,C and D are sets.
 - a. Show that the sets AD^c and AD are disjoint where D^c is $\sim D$.
 - b. Show that $A \setminus D \cup AD = A$
- 3. Urn A contains 2 red and 8 black balls. Urn B contains 8 red and 2 black balls. If a ball is randomly chosen from each urn what is the probability that they will be the same color.
- 4. On rainy days, Joe is late to work with probability .5; on non-rainy days, he is late to work with probability .1. With probability .6 it will rain tomorrow.
 - a. Find the probability that Joe is early tomorrow.
 - b. Given that Joe is early what is the conditional probability that it rained.
- 5. Show from our union law (for non-disjoint sets) and the fact that $P(X) \le 1$ for any set X that $P(AB) \ge P(A) + P(B) 1$.
- 6. Prove our theorem (from definitions of conditional probability) that if P(AB) = P(A)P(B) then $P(A|B) = P(A|B^c)$ where P(B) and $P(B^c)$ are not 0.
- 7. Suppose $P(H_2|H_1)=.25$ and $P(T_2|T_1)=.5$ where we are either in an H situation or a T situation (heads or tails) and the subscripts refer to the first or second trial. We also know that $P(H_1)=.4$.
 - a. Let T_2 be the event of a tail on the second trial. What is $P(T_2)$.
 - b. With similar notation what is $P(T_1|T_2)$